Mechanisms of fatigue induced by isometric contractions in exercising humans and in mouse isolated single muscle fibres

1. Muscle fatigue (i.e. the decrease in muscle performance during exercise) has been studied extensively using a variety of experimental paradigms, from mouse to human, from single cell to whole-body exercise. Given the disparity of models used to characterize muscle fatigue, it can be difficult to establish whether the results of basic in vitro studies are applicable to exercise in humans. 2. In the present brief review, our attempt is to relate neuromuscular alterations caused by repeated or sustained isometric contraction in humans to changes in excitation-contraction (E-C) coupling observed in intact single muscle fibres, where force and the free myoplasmic [Ca(2+)] can be measured. 3. Accumulated data indicate that impairment of E-C coupling, most likely located within muscle fibres, accounts for the fatigue-induced decrease in maximal force in humans, whereas central (neural) fatigue is of greater importance for the inability to continue a sustained low-intensity contraction. Based on data from intact single muscle fibres, the fatigue-induced impairment in E-C coupling involves: (i) a reduced number of active cross-bridges owing to a decreased release of Ca(2+); (ii) a decreased sensitivity of the myofilaments to Ca(2+); and/or (iii) a reduced force produced by each active cross-bridge. 4. In conclusion, data from single muscle fibre studies can be used to increase our understanding of fatigue mechanisms in some, but not all, types of human exercise. To further increase the understanding of fatigue mechanisms in humans, we propose future studies using in vitro stimulation patterns that are closer to the in vivo situation.

Similar articles

Eichelberger TD, Bilodeau M. Eichelberger TD, et al. Clin Physiol Funct Imaging. 2007 Sep;27(5):298-304. doi: 10.1111/j.1475-097X.2007.00751.x. Clin Physiol Funct Imaging. 2007. PMID: 17697026

Place N, Yamada T, Bruton JD, Westerblad H. Place N, et al. Eur J Appl Physiol. 2010 Sep;110(1):1-15. doi: 10.1007/s00421-010-1480-0. Epub 2010 Apr 24. Eur J Appl Physiol. 2010. PMID: 20419312 Review.

Desbrosses K, Babault N, Scaglioni G, Meyer JP, Pousson M. Desbrosses K, et al. Med Sci Sports Exerc. 2006 May;38(5):937-44. doi: 10.1249/01.mss.0000218136.58899.46. Med Sci Sports Exerc. 2006. PMID: 16672848

Bruton J, Pinniger GJ, Lännergren J, Westerblad H. Bruton J, et al. Acta Physiol (Oxf). 2006 Jan;186(1):59-66. doi: 10.1111/j.1748-1716.2005.01499.x. Acta Physiol (Oxf). 2006. PMID: 16497180

Lännergren J, Westerblad H, Bruton JD. Lännergren J, et al. Acta Physiol Scand. 1996 Mar;156(3):193-202. doi: 10.1046/j.1365-201X.1996.198000.x. Acta Physiol Scand. 1996. PMID: 8729679 Review.

Cited by

Souron R, Pageaux B, Grosboillot N, Guillot A, Gruet M, Bertrand MF, Millet GY, Lapole T. Souron R, et al. Eur J Appl Physiol. 2024 May 24. doi: 10.1007/s00421-024-05510-6. Online ahead of print. Eur J Appl Physiol. 2024. PMID: 38787411

Goudini R, Zahiri A, Alizadeh S, Drury B, Anvar SH, Daneshjoo A, Behm DG. Goudini R, et al. Sports (Basel). 2024 Feb 15;12(2):59. doi: 10.3390/sports12020059. Sports (Basel). 2024. PMID: 38393279 Free PMC article.

Wang Y, Li Z, Tongtong C, Zhang W, Li X. Wang Y, et al. Sci Rep. 2023 Nov 6;13(1):19152. doi: 10.1038/s41598-023-44523-7. Sci Rep. 2023. PMID: 37932313 Free PMC article.

Schaefer LV, Carnarius F, Dech S, Bittmann FN. Schaefer LV, et al. Front Physiol. 2023 Feb 22;14:1020954. doi: 10.3389/fphys.2023.1020954. eCollection 2023. Front Physiol. 2023. PMID: 36909246 Free PMC article.

Rampinini E, Martin M, Davide F, Bosio A, Azzolini M, Riggio M, Maffiuletti NA. Rampinini E, et al. Eur J Appl Physiol. 2022 Sep;122(9):2125-2134. doi: 10.1007/s00421-022-04988-2. Epub 2022 Jun 29. Eur J Appl Physiol. 2022. PMID: 35768697